You Don’t See Them, but They Sure Are There

The Ears that Fish Have

That fish can hear was documented nearly 100 years ago by Nobel Prize winner Karl v. Frisch, famous for his work on honeybee communication. Freshwater fish of the carp family, like most bony fishes, not only possess swim bladders that allow them to stay buoyant at different depths, but unlike others also possess small bony connections between the fish’s inner ear and the swim bladder. The gas in the latter gets compressed in response to sound pressure in the water, starts vibrating, and then transmits the signal via the aforementioned small bones, known as Weberian ossicles, to sensitive hair cells of the inner ear. Sound amplitude (loudness) and frequency (pitch) are important, but even in fish with the best hearing, sounds above 6,000 Hz would be ultrasound to them and in swim bladder-lessfish like the fast mackerel and the tuna but even in the more sluggish Antarctic icefishes only lower frequencies can be detected.

Sounds are longitudinally transmitted waves, whose frequencies and amplitudes may vary. Because of the water’s greater density than that of air, sounds are propagated 4.8 times faster in water than in air. In a broad sense sounds are generated by movements or vibrations and in water can be the results of an animal’s vocalizations or activities, of sounds created by ice-floes or logs rubbing or bumping against each other, breaking waves, anthropogenically-produced noise like explosions and disturbances created by ships. In order to sense the sounds, fish use ear stones, i.e. so-called otoliths. Bathed in endolymphatic fluid and resting on a pad of receptor cells with sensory hairs, the two major otoliths are located just below the brain in two bony sacs of the inner ear known as the saccule and the utricle. The otoliths are part of the bony vestibule’s two regions, i.e. the cochlear portion (for hearing) and the vestibular portion with its semicircular canals (for balance and angular change). Thus, otoliths can be said to be involved in the detection of gravity and linear accelerations and serve as a structure of hearing in fish, so well explained in a recent review by Dr. Tanja Schulz-Mirbach of Munich.

Otoliths are hard, durable structures that consist primarily of calcium carbonate (CaCO3) in the form of aragonite.They remain largely unchanged during the digestion in the stomach and gut of a predator. They are thus an excellent structure to estimate a fish’s age, because their size increases by periodically laid down alternating opaque and translucent bands that consist of CaCO3 and collagen fibres. As daily increments are regularly added, researchers can correlate the number of layers with the fish’s body length and use the tabulated data to identify the fish’s age. What makes the study complicated is that the otoliths, not being translucent enough to count the layers, need to be sectioned. Furthermore, although the shapes of the otoliths are species-specific, they can vary in individuals of the same species, depending on the fish’s developmental stage and if the fish was actively swimming or passively drifting.

In Antarctic icefish my Polish colleague Ryszard Traczyk and I have recently concluded that the more spherical otoliths of larval specimens and the longish otolith shapes of the adults are the results of the inertia and friction experienced by the otoliths in their endolymphatic fluid when the fish swim: larvae swim less than adult icefish and the latter swim less than mackerel (which possess the most elongate otoliths). It is entirely possible that oscillations of the dense otoliths generate shearing forces that deflect the sensory hairs of the cells they are resting on, when the oscillations are due to disturbances in the water made by nearby prey or the approach of a predator. Responses to such disturbances in the “acoustico-lateralis” vicinity of the fish would then not only be sensed by the lateral line system, but picked up by the fish’s otoliths too and sent to the brain via the 8th cranial nerve, often referred to as the vestibulocochlear nerve. So, do fish make some noise and can they hear? Actually only a few produce sounds, but all bony fish can hear. However, there’s certainly no need to whisper when you sit in front of your aquarium and watch your colourful aquatic beauties in their 3-dimensional world.

© Dr V.B. Meyer-Rochow and http://www.bioforthebiobuff.wordpress.com, 2021. Unauthorized use and/or duplication of this material without express and written permission from this site’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to V.B Meyer-Rochow and http://www.bioforthebiobuff.wordpress.com with appropriate and specific direction to the original content.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s